Abstract

We consider the task of discovering functional dependencies in data for target attributes of interest. To solve it, we have to answer two questions: How do we quantify the dependency in a model-agnostic and interpretable way as well as reliably against sample size and dimensionality biases? How can we efficiently discover the exact or alpha -approximate top-k dependencies? We address the first question by adopting information-theoretic notions. Specifically, we consider the mutual information score, for which we propose a reliable estimator that enables robust optimization in high-dimensional data. To address the second question, we then systematically explore the algorithmic implications of using this measure for optimization. We show the problem is NP-hard and justify worst-case exponential-time as well as heuristic search methods. We propose two bounding functions for the estimator, which we use as pruning criteria in branch-and-bound search to efficiently mine dependencies with approximation guarantees. Empirical evaluation shows that the derived estimator has desirable statistical properties, the bounding functions lead to effective exact and greedy search algorithms, and when combined, qualitative experiments show the framework indeed discovers highly informative dependencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.