Abstract

An increasing number of cis-regulatory RNA elements have been found to regulate gene expression post-transcriptionally in various biological processes in bacterial systems. Effective computational tools for large-scale identification of novel regulatory RNAs are strongly desired to facilitate our exploration of gene regulation mechanisms and regulatory networks. We present a new computational program named RSSVM (RNA Sampler+Support Vector Machine), which employs Support Vector Machines (SVMs) for efficient identification of functional RNA motifs from random RNA secondary structures. RSSVM uses a set of distinctive features to represent the common RNA secondary structure and structural alignment predicted by RNA Sampler, a tool for accurate common RNA secondary structure prediction, and is trained with functional RNAs from a variety of bacterial RNA motif/gene families covering a wide range of sequence identities. When tested on a large number of known and random RNA motifs, RSSVM shows a significantly higher sensitivity than other leading RNA identification programs while maintaining the same false positive rate. RSSVM performs particularly well on sets with low sequence identities. The combination of RNA Sampler and RSSVM provides a new, fast, and efficient pipeline for large-scale discovery of regulatory RNA motifs. We applied RSSVM to multiple Shewanella genomes and identified putative regulatory RNA motifs in the 5′ untranslated regions (UTRs) in S. oneidensis, an important bacterial organism with extraordinary respiratory and metal reducing abilities and great potential for bioremediation and alternative energy generation. From 1002 sets of 5′-UTRs of orthologous operons, we identified 166 putative regulatory RNA motifs, including 17 of the 19 known RNA motifs from Rfam, an additional 21 RNA motifs that are supported by literature evidence, 72 RNA motifs overlapping predicted transcription terminators or attenuators, and other candidate regulatory RNA motifs. Our study provides a list of promising novel regulatory RNA motifs potentially involved in post-transcriptional gene regulation. Combined with the previous cis-regulatory DNA motif study in S. oneidensis, this genome-wide discovery of cis-regulatory RNA motifs may offer more comprehensive views of gene regulation at a different level in this organism. The RSSVM software, predictions, and analysis results on Shewanella genomes are available at http://ural.wustl.edu/resources.html#RSSVM.

Highlights

  • RNA is remarkably versatile [1,2], acting as messengers to transfer genetic information from DNA to protein, and as critical structural components [3] and catalytic enzymes [4,5] in the cell

  • We applied this approach to multiple Shewanella genomes and predicted putative regulatory RNA elements in Shewanella oneidensis, a bacterium that has extraordinary respiratory and metal reducing abilities and great potential for bioremediation and alternative energy generation

  • We examined the performance of RSSVM in identifying RNA regulatory motifs on 1686 positive and 1686 negative test sequence sets and compared its performance with that of RNAz, Dynalign+LIBSVM and QRNA

Read more

Summary

Introduction

RNA is remarkably versatile [1,2], acting as messengers to transfer genetic information from DNA to protein, and as critical structural components [3] and catalytic enzymes [4,5] in the cell. Non-coding RNAs (ncRNA) have been found to play important regulatory roles They can mediate gene expression post-transcriptionally in two ways: one is to serve as trans-acting antisense RNAs, such as microRNAs, which hybridize with target mRNAs to silence their expression [6,7]; the other is to form structural cis-elements in the mRNAs, such as riboswitches, which regulate gene expression by mediating transcription termination or translation initiation [8,9]. In the past a few years, many cis-regulatory RNA structural motifs have been identified in prokaryotes [13,14,15] They are often located in the 59 untranslated regions (UTR) of the mRNAs and can sense or interact with cognate factors, including proteins, RNAs, small metabolites, or even temperature changes, to mediate transcription attenuation [8], translation initiation [9], or mRNA stability [16]. Regulatory RNAs are often conserved during evolution: similar regulatory RNA elements can be shared by multiple co-regulated genes in the same metabolic pathway, or conserved in orthologous genes across closely related species [17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call