Abstract

This paper tackles two challenges to discovery of graph rules. Existing discovery methods often (a) return an excessive number of rules, and (b) do not scale with large graphs given the intractability of the discovery problem. We propose an application-driven strategy to cut back rules and data that are irrelevant to users' interests, by training a machine learning (ML) model to identify data pertaining to a given application. Moreover, we introduce a sampling method to reduce a big graph G to a set H of small sample graphs. Given expected support and recall bounds, the method is able to deduce samples in H and mine rules from H to satisfy the bounds in the entire G . As proof of concept, we develop an algorithm to discover Graph Association Rules (GARs), which are a combination of graph patterns and attribute dependencies, and may embed ML classifiers as predicates. We show that the algorithm is parallelly scalable, i.e. , it guarantees to reduce runtime when more machines are used. We experimentally verify that the method is able to discover rules with recall above 91% when using sample ratio 10%, with speedup of 61 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.