Abstract

Anomaly detection in mixed-type data is an important problem that has not been well addressed in the machine learning field. Existing approaches focus on computational efficiency and their correlation modeling between mixed-type attributes is heuristically driven, lacking a statistical foundation. In this paper, we propose MIxed-Type Robust dEtection (MITRE), a robust error buffering approach for anomaly detection in mixed-type datasets. Because of its non-Gaussian design, the problem is analytically intractable. Two novel Bayesian inference approaches are utilized to solve the intractable inferences: Integrated-nested Laplace Approximation (INLA), and Expectation Propagation (EP) with Variational Expectation-Maximization (EM). A set of algorithmic optimizations is implemented to improve the computational efficiency. A comprehensive suite of experiments was conducted on both synthetic and real world data to test the effectiveness and efficiency of MITRE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.