Abstract

The integration of intrinsic thermal conductivity and intrinsic flame retardancy of epoxy resins shows wider application prospects in electricals and electronics. Discotic liquid crystal epoxy (D-LCE) is synthesized from pyrocatechol, 2-allyloxyethanol, and 3-chloroperoxybenzoic acid. P/Si synergistic flame-retardant co-curing agent (DOPO-POSS, DP) is synthesized from p-hydroxybenzaldehyde, 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), and amino terminated polysilsesquioxane (POSS). Finally, D-LCE is cured within liquid crystal range with 4, 4'-diaminodiphenyl methane (DDM) and DP, to obtain intrinsic highly thermal conductive/flame-retardant epoxy resins (D-LCERDP ). D-LCERDP-10.0 (10.0 wt% DP) synchronously possesses excellent intrinsic thermal conductivity and intrinsic flame retardancy, with thermal conductivity coefficient in vertical and parallel direction (λ⊥ and λ∥ ) of 0.34 and 1.30 W m-1 K-1 , much higher than that of general bisphenol A epoxy resin (E-51, λ⊥ of 0.19 W m-1 K-1 , λ∥ of 0.65 W m-1 K-1 ). The limiting oxygen index (LOI) value of D-LCERDP-10.0 reaches 31.1, also better than those of E-51 (19.8) and D-LCER (21.3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call