Abstract

Background: We report monozygotic twin girls with a family history consistent with X-linked hypophosphataemic rickets (XLH). One twin had a skeletal and biochemical phenotype consistent with XLH, whilst the second twin appeared normal. Complete non-penetrance in XLH has not been previously reported and our aim was to explore potential reasons for this. Methods: Serum and urine biochemistry were analysed at regular intervals. Microsatellite analysis was performed to confirm monozygosity and bi-parental inheritance of the X chromosome. The X chromosome inactivation pattern was studied in peripheral blood. Exons of the paternal PHEX and FGF23 genes were sequenced. Results: Biochemistry was persistently abnormal in the slow-growing twin 1 and normal in twin 2 who has grown normally. Maximal tubular phosphate reabsorption was 0.68 mmol/l in twin 1 and 1.64 mmol/l in twin 2 at 10.8 years of age (normal 1.15–2.58 mmol/l). Microsatellite analysis confirmed monozygosity and the X chromosome inactivation pattern was random. These studies also excluded uniparental isodisomy. The exon sequence of paternal PHEX and FGF23 genes was normal. Conclusions: Discordant X inactivation is a well-recognised phenomenon in identical twins, and we suspect that non-random expression of the normal PHEX gene in critical tissues is the most likely explanation for non-penetrance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.