Abstract

Although the molecular basis of pseudohypoparathyroidism type 1b (PHP type 1b) remains unknown, a defect in imprinting at the GNAS1 locus has been suggested by the consistent finding of paternal-specific patterns of DNA methylation on maternally inherited GNAS1 alleles. To characterize the relationship between the genetic and epigenetic defects in PHP type 1b, we analyzed allelic expression and methylation of CpG islands within exon 1A of GNAS1 in patients with sporadic PHP type 1b and in affected and unaffected individuals from five multigenerational kindreds with PHP type 1b. All subjects with resistance to parathyroid hormone (PTH) showed loss of methylation of the exon 1A region on the maternal GNAS1 allele and/or biallelic expression of exon 1A-containing transcripts, consistent with an imprinting defect. Paternal transmission of the disease-associated haplotype was associated with normal patterns of GNAS1 methylation and PTH responsiveness. We found that affected and unaffected siblings in one kindred had inherited the same GNAS1 allele from their affected mother, evidence for dissociation between the genetic and epigenetic GNAS1 defects. The absence of the epigenetic defect in subjects who have inherited a defective maternal GNAS1 allele suggests that the genetic mutation may be incompletely penetrant, and it indicates that the epigenetic defect, not the genetic mutation, leads to renal resistance to PTH in PHP type 1b.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.