Abstract

We examine the quantum correlations of spin pairs in the cyclic $\mathit{XX}$ spin-$1/2$ chain in a transverse field through the analysis of the quantum discord, the geometric discord, and the information deficit. It is shown that while these quantities provide the same qualitative information, being nonzero for all temperatures and separations and exhibiting the same type of asymptotic behavior for large temperatures or separations, important differences arise in the minimizing local measurement that defines them. Whereas the quantum discord prefers a spin measurement perpendicular to the transverse field, the geometric discord and information deficit exhibit a perpendicular-to-parallel transition as the field increases, which subsists at all temperatures and for all separations. Moreover, it is shown that such transition signals the change from a Bell state to an aligned separable state of the dominant eigenstate of the reduced density matrix of the pair. Full exact results for both the thermodynamic limit and the finite chain are provided through the Jordan-Wigner fermionization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.