Abstract

We study the Cauchy problem for the simplest first-order Hamilton–Jacobi equation in one space dimension, with a bounded and Lipschitz continuous Hamiltonian which only depends on the spatial derivative. Uniqueness of discontinuous viscosity solutions is proven, if the initial data function has a finite number of jump discontinuities. Main ingredients of the proof are the barrier effect of spatial discontinuities of a solution (which is linked to the boundedness of the Hamiltonian), and a comparison theorem for semicontinuous viscosity subsolution and supersolution. These are defined in the spirit of the paper [H. Ishii, Perron’s method for Hamilton–Jacobi equations, Duke Math. J. 55 (1987) 368–384], yet using essential limits to introduce semicontinuous envelopes. The definition is shown to be compatible with Perron’s method for existence and is crucial in the uniqueness proof. We also describe some properties of the time evolution of spatial jump discontinuities of the solution, and obtain several results about singular Neumann problems which arise in connection with the above referred barrier effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.