Abstract
In this paper, various types of discontinuous space vector pulse-width modulation techniques for a three-leg voltage source inverter supplying balanced two-phase loads are proposed. The main objectives of the paper are to analyze switching loss characteristics associated with semiconductor devices and to reduce output current ripple by dealing with various types of zero space vector time in each switching sequence. Capabilities of reductions in switching losses and current ripple for both balanced and unbalanced output phase voltages at high modulation index and load power factor angle of 30° lagging are focused. The validity of the proposed techniques is verified by simulation and experimental results in terms of voltage spectrum, current waveforms, reductions in switching losses, and output current ripple at high modulation index when compared to a continuous space vector pulse-width modulation technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.