Abstract
The unusual superconducting (SC) phase transitions occuring under competing orbital and spin pair breaking, which characterize clean strongly type-II superconductors at low temperatures, are investigated within a non-perturbative approach, which avoides the difficulties encountered in various perturbative approaches and enables comparison with recent experimental data. It is shown that in a 3D system with strong spin-splitting, a spatial (FFLO) modulation of the order parameter along the magnetic-field direction preserves the continuous nature of the SC transition. However, at a magnetic field slightly below Hc2 the FFLO state becomes unstable, transforming discontinuously into a uniform SC state via a first-order phase transition. Our calculation shows that the entropy jump at the first-order phase transition is siginificantly larger than its total variation in the continuous region between the two transitions, in agreement with recent thermal-conductivity measurements performed on the heavy-fermion compound URu2Si2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.