Abstract
Let H be a bounded and Lipschitz continuous function. We consider discontinuous viscosity solutions of the Hamilton–Jacobi equation \(U_{t}+H(U_x)=0\) and signed Radon measure valued entropy solutions of the conservation law \(u_{t}+[H(u)]_x=0\). After having proved a precise statement of the formal relation \(U_x=u\), we establish estimates for the (strictly positive!) times at which singularities of the solutions disappear. Here singularities are jump discontinuities in case of the Hamilton–Jacobi equation and signed singular measures in case of the conservation law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.