Abstract

In the present paper, the question of the mechanism of discontinuous plastic flow (DPF) occurring at extremely low temperatures (in the proximity of absolute zero), is for the first time raised in the context of kinematically controlled combined loads (independent control of displacement and rotation) and non-proportional loading paths. In order to identify the multiaxial stress state during DPF, a unique set-up for testing tubular samples under kinematically controlled traction and torsion in liquid helium (4.2 K) has been developed. The results of tests performed on grade 304 stainless steel thin-walled tubular samples subjected to combined loads (traction and torsion) in the proximity of absolute zero are for the first time reported. These novel results confirm the assumptions accepted when building the multiaxial constitutive model of discontinuous plastic flow, namely, the production of lattice barriers, the pile-ups of dislocations and the criterion of their collective failure, as well as the assumption that the serrations may be recorded by force and torque transducers independently. Thus, the numerically implemented model allows to reproduce the observed serrations, and to redistribute them between the loading directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call