Abstract

Discontinuous percolation transitions and the associated tricritical points are manifest in a wide range of both equilibrium and nonequilibrium cooperative phenomena. To demonstrate this, we present and relate the continuous and first-order behaviors in two different classes of models: The first are generalized epidemic processes that describe in their spatially embedded version--either on or off a regular lattice--compact or fractal cluster growth in random media at zero temperature. A random graph version of these processes is mapped onto a model previously proposed for complex social contagion. We compute detailed phase diagrams and compare our numerical results at the tricritical point in d = 3 with field theory predictions of Janssen et al. [Phys. Rev. E 70, 026114 (2004)]. The second class consists of exponential ("Hamiltonian," i.e., formally equilibrium) random graph models and includes the Strauss and the two-star model, where "chemical potentials" control the densities of links, triangles, or two-stars. When the chemical potentials in either graph model are O(logN), the percolation transition can coincide with a first-order phase transition in the density of links, making the former also discontinuous. Hysteresis loops can then be of mixed order, with second-order behavior for decreasing link fugacity, and a jump (first order) when it increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.