Abstract

Fundamental understanding of biomolecular interfacial behavior, such as protein adsorption at the microscopic scale, is critical to broad applications in biomaterials, nanomedicine, and nanoparticle-based biosensing techniques. The goal of achieving both computational efficiency and accuracy presents a major challenge for simulation studies at both atomistic and molecular scales. In this work, we developed a unique, accurate, high-throughput simulation method which, by integrating discontinuous molecular dynamics (DMD) simulations with the Go-like protein-surface interaction model, not only solves the dynamics efficiently, but also describes precisely the protein intramolecular and intermolecular interactions at the atomistic scale and the protein-surface interactions at the coarse-grained scale. Using our simulation method and in-house developed software, we performed a systematic study of α-helical ovispirin-1 peptide adsorption on a graphene surface, and our study focused on the effect of surface hydrophobic interactions and π-π stacking on protein adsorption. Our DMD simulations were consistent with full-atom molecular dynamics simulations and showed that a single ovispirin-1 peptide lay down on the flat graphene surface with randomized secondary structure due to strong protein-surface interactions. Peptide aggregates were formed with an internal hydrophobic core driven by strong interactions of hydrophobic residues in the bulk environment. However, upon adsorption, the hydrophobic graphene surface can break the hydrophobic core by denaturing individual peptide structures, leading to disassembling the aggregate structure and further randomizing the ovispirin-1 peptide's secondary structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.