Abstract
This paper presents a discontinuous numerical approach for studying roof cave-in mechanisms and obtaining the required support capacity of longwall shields in a case study site, the Svea Nord coal mine in Svalbard. The block size in the roof strata and the mechanical parameters of the discontinuities for the numerical model were obtained through back-calculations. The back-calculations were conducted with a statistical method of design of experiment. Numerical simulations revealed that voussoir jointed beams are formed before the first cave-in occurs. The maximum deflection of a roof stratum in the study site prior to the first cave-in is about 70 % of the stratum thickness. The maximum span of the roof strata prior to the first cave-in depends upon the in situ horizontal stress state. The roof beams have a large stable span when they are subjected to high horizontal stress; but horizontal stress would increase the possibility of rock crushing in deflected roof beams. The simulations and field measurements show no periodic weighting on the longwall shields in the study site. Stiff and strong roof beams would result in large first and periodic cave-in distances. As a consequence of having large cave-in distances, the longwall shields must have high load capacity, which can be calculated by the presented numerical approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.