Abstract
In this paper, a Lyapunov-based method is provided to study the local asymptotic stability of planar piecewise affine systems with continuous vector fields. For such systems, the state space is supposed to be partitioned into several bounded convex polytopes. A piecewise affine function, not necessarily continuous on the boundaries of the polytopic partitions, is proposed as a candidate Lyapunov function. Then, sufficient conditions for the local asymptotic stability of the system, including a monotonicity condition at switching instants, are formulated as a linear programming problem. In addition, when the problem does not have a feasible solution based on the original partitions of the system, a new partition refinement algorithm is presented. In this way, more flexibility can be provided in searching for the Lyapunov function. Owing to relaxation of the continuity condition imposed on the system boundaries, the proposed method reaches to less conservative results, compared with the previous methods based on continuous piecewise affine Lyapunov functions. Simulation results illustrate the effectiveness of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.