Abstract

Time-delay systems arise in many important applications in science and engineering and optimal control of delay differential equations are of theoretical and practical importance. This paper presents discontinuous Legendre wavelet Galerkin (DLWG) approach for solving optimal control problem of time-delayed systems. This new method demonstrates that operational matrices of derivative, delay and product are lower dimensions and sparse because of calculation only on each subinterval. The advantages are implemented to solve algebraic equations transformed from the time-delayed systems with less storage space and execution time. Finally, an experiment is included to illustrate the effectiveness and applicability of the proposed method

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call