Abstract

Saline stress impairs germination and initial plant growth. However, discontinuous hydration cycles induce osmotic tolerance in seeds and can improve the response of maize seeds to saline stress. The objective of this study was to evaluate the action of discontinuous hydration cycles with different salt stress tolerance elicitors on germination, growth, and osmotic adjustment of maize cultivars. Maize seeds of BR 206 and BRS 5037 Cruzeta cultivars were subjected to the following treatments: 0.0 mmol of NaCl (control), 250 mmol of NaCl (salt stress), salt stress + three discontinuous hydration cycles (DHCs) of seeds in water, salt stress + DHCs with gibberellic acid, salt stress + DHCs with hydrogen peroxide, salt stress + DHCs with salicylic acid, and salt stress + DHCs with ascorbic acid. Salt stress reduced the germination, growth, and biomass accumulation in maize seedlings—the BR 206 cultivar outperformed BRS 5037 Cruzeta. Discontinuous hydration cycles with water failed to improve the salt stress tolerance of maize seeds. However, discontinuous hydration cycles with gibberellic acid, hydrogen peroxide, and salicylic acid promoted salt stress tolerance in maize due to increased synthesis of osmoprotectants. Our results revealed salicylic acid is appropriate for discontinuous hydration cycles in maize seeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call