Abstract

This paper presents a unified analysis of discontinuous Galerkin methods to approximate Friedrichs' systems. An abstract set of conditions is identified at the continuous level to guarantee existence and uniqueness of the solution in a subspace of the graph of the differential operator. Then a general discontinuous Galerkin method that weakly enforces boundary conditions and mildly penalizes interface jumps is proposed. All the design constraints of the method are fully stated, and an abstract error analysis in the spirit of Strang's Second Lemma is presented. Finally, the method is formulated locally using element fluxes, and links with other formulations are discussed. Details are given for three examples, namely, advection-reaction equations, advection-diffusion-reaction equations, and the Maxwell equations in the so-called elliptic regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.