Abstract

This paper is concerned with the numerical solution of dynamic elasticity by the discontinuous Galerkin (dG) method. We consider the linear and nonlinear St. Venant-Kirchhoff model. The dynamic elasticity problem is split into two systems of first order in time. They are discretized by the discontinuous Galerkin method in space and backward difference formula in time. The developed method is tested by numerical experiments. Then the method is combined with the space-time dG method for the solution of compressible flow in a time dependent domain and used for the numerical simulation of fluid-structure interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.