Abstract

AbstractA stabilized discontinuous Galerkin (DG) formulation is presented for transient small deformation contact problems involving friction with application to the modeling of bolted lap joints. The method is an extension of derivations from the quasi-static context, whereby the numerical flux terms acting at the contact interface are consistently derived using variational multiscale concepts. This transient primal formulation naturally accommodates nonconforming meshes and stratified materials such as geological faults. Also, the numerical flux terms involving the stress field at the contacting interface provide a natural mechanism for embedding friction models. Numerical results for nonsmooth transient problems confirm that the DG interface approach does not introduce artificial features into the physical response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.