Abstract
We develop the convergence analysis of discontinuous Galerkin finite element approximations to symmetric second-order quasi-linear elliptic and hyperbolic systems of partial differential equations in divergence form in a bounded spatial domain in $\mathbb{R}^d$, subject to mixed Dirichlet-Neumann boundary conditions. Optimal-order asymptotic bounds are derived on the discretization error in each case without requiring the global Lipschitz continuity or uniform monotonicity of the stress tensor. Instead, only local smoothness and a Garding inequality are used in the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.