Abstract
We exhibit a class of functions f:R→R which are bounded, continuous on R∖Q, left discontinuous on Q, right differentiable on Q, and upper left Dini differentiable on R∖Q. Other properties of these functions, such as jump sizes and local extrema, are also discussed. These functions are constructed using probabilistic methods. We also show that the families of functions satisfying similar properties contain large algebraic structures (obtaining lineability, algebrability and coneability).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.