Abstract
The dynamics of the molecular glass former ortho-terphenyl through the glass transition were observed with two-dimensional infrared vibrational spectroscopy measurements of spectral diffusion using the small probe molecule phenylselenocyanate. Although the slow diffusive motions were not visible on the experimental time scale, a picosecond-scale exponential relaxation was observed at temperatures from above to well below the glass transition temperature. The characteristic time scale has a smooth temperature dependence from the liquid into the glass phase, but the range of vibrational frequencies the probe samples displayed a discontinuity at the glass transition temperature. Complementary pump-probe experiments associate the observed motion with density fluctuations. The key features of the dynamics are reproduced with a simple corrugated well potential energy surface model. In addition, the temperature dependence of the homogeneous vibrational dephasing was found to have a T2 functional form, where T is the absolute temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.