Abstract

A special mesh adaptation technique and a precise discontinuity tracking are presented for an accurate, efficient, and robust adaptive-mesh computational procedure for one-dimensional hyperbolic systems of conservation laws, with particular reference to problems with evolving discontinuities in solids. The main advantage of the adaptive technique is its ability to preserve the modified mesh as close to the original fixed mesh as possible. The constructed method is applied to the martensitic phase-transition front propagation in solids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.