Abstract

For a piecewise monotonic map T:X\to{\Bbb R}, where X is a finite union of closed intervals, define R(T)= \bigcap_{n=0}^{\infty}\overline{T^{-n}X}. The influence of small perturbations of T on the dynamical system (R(T),T) is investigated. If P is a finite and T-invariant subset of R(T), and if f_0:P\to{\Bbb R} is a non-negative continuous function, then it is proved that the infimum of the topological pressure p(R(T),T,f) over all non-negative continuous functions f:X\to{\Bbb R} with f|_P=f_0 equals the maximum of h_{\text{\rm top}}(R(T),T) and p(P,T,f_0). This result is used to obtain stability conditions, which are equivalent to the upper semi-continuity of the topological pressure for every continuous function f:X\to{\Bbb R}. In the case of a continuous piecewise monotonic map T:X\to{\Bbb R} one of these stability conditions is: there exists no endpoint of an interval of monotonicity of T which is periodic and contained in the interior of X. Furthermore, these results are applied to monotonic mod one transformations, another special case of piecewise monotonic maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.