Abstract
Aperiodic substitution tilings provide popular models for quasicrystals, materials exhibiting aperiodic order. We study the graph Laplacian associated with four tilings from the mutual local derivability class of the Penrose tiling, as well as the Ammann–Beenker tiling. In each case we exhibit locally-supported eigenfunctions, which necessarily cause jump discontinuities in the integrated density of states for these models. By bounding the multiplicities of these locally-supported modes, in several cases we provide concrete lower bounds on this jump. These results suggest a host of questions about spectral properties of the Laplacian on aperiodic tilings, which we collect at the end of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.