Abstract

Line Bisection is a simple task frequently used in stroke patients to diagnose disorders of spatial perception characterized by a directional bisection bias to the ipsilesional side. However, previous anatomical and behavioural findings are contradictory, and the diagnostic validity of the line bisection task has been challenged. We hereby aimed to re-analyse the anatomical basis of pathological line bisection by using multivariate lesion-symptom mapping and disconnection-symptom mapping based on support vector regression in a sample of 163 right hemispheric acute stroke patients. In line with some previous studies, we observed that pathological line bisection was related to more than a single focal lesion location. Cortical damage primarily to right parietal areas, particularly the inferior parietal lobe, including the angular gyrus, as well as damage to the right basal ganglia contributed to the pathology. In contrast to some previous studies, an involvement of frontal cortical brain areas in the line bisection task was not observed. Subcortically, damage to the right superior longitudinal fasciculus (I, II and III) and arcuate fasciculus as well as the internal capsule was associated with line bisection errors. Moreover, white matter damage of interhemispheric fibre bundles, such as the anterior commissure and posterior parts of the corpus callosum projecting into the left hemisphere, was predictive of pathological deviation in the line bisection task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call