Abstract

Appropriate sound quality models for noise-induced discomfort are necessary for a better acoustic comfort design in the aircraft cabin. This study investigates the acoustic discomfort in two large passenger aeroplanes (i.e., planes A and B). We recorded the noise at 21 positions in each aircraft cabin and selected 42 stimuli ranging from 72 to 81 dB(A) during the cruising flights. Twenty-four participants rated the noise discomfort by the absolute magnitude estimation method. The discomfort values in the middle section of the aircraft cabin are 10% points higher than in the front or rear section. The discomfort magnitude was dominated by loudness and influenced by roughness and sharpness. A multiple linear (MA) discomfort model was established, accounting for the relationship between the discomfort and sound quality metrics (i.e., loudness, sharpness, and roughness). The MA model estimated noise discomfort better than the Zwicker and other (i.e., More and Di) psychoacoustic annoyance (PA) models. We modified the coefficients of independent variables in the formulations of Zwicker, Di, and More PA models, respectively, according to the present experimental results. The correlation coefficients between the estimated and measured values of the modified models were at least 20% points higher than the original ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call