Abstract

In this study, the internal transport phenomena and mechanism inside an air-cooled proton exchange membrane fuel cell (PEMFC) are investigated. It helps to understand the factors that affect the performance of an air-cooled PEMFC and optimize the design of Membrane Electrode Assembly (MEA) and the flow field. This series article contains two parts. In this paper, i.e., Part Ⅰ of this series, a three-dimensional, two-phase flow, non-isothermal, steady-state Computational Fluid Dynamics (CFD) model is established to investigate the liquid water generation mechanism and the species distributions inside an air-cooled PEMFC single cell with a Base Case flow field design. Dry hydrogen and ambient air (the relative humidity and the stoichiometry are 60% and 150 separately) are considered for the simulation and validation. It is found that the liquid water appears mostly inside the cathode electrode underneath the cathode rib. Inside the anode gas diffusion layer (GDL), the mass fraction of H2 underneath the cathode ribs is lower than that underneath the cathode channels, while the mass fraction of H2O shows the opposite. The distributions of O2 mass fraction and H2O mass fraction inside the cathode GDL have the same trend as those of H2 mass fraction and H2O mass fraction inside the anode GDL. The membrane water content is periodically distributed from channel to channel and its value underneath the cathode rib is much larger than that underneath the cathode channel. The current density distribution is affected by the distribution of water content, i.e., the part underneath the cathode rib shows a larger current density than that underneath the cathode channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.