Abstract

Bacteria overexpress, under condition of starvation or oxidative stress, Dps (DNA-binding proteins from starved cells), hollow sphere formed by 12 identical subunits endowed with ferritin-like activity. The iron oxidation and incorporation in Dps take place using H2O2 produced under starvation as preferred iron oxidant, thereby protecting bacteria from oxidative damage. Even if the role of Dps is well known, the mechanism of iron oxidation and incorporation remain to be elucidated. Here, we have used the EPR technique to shed light on the Fe(II) binding and oxidation mechanism at the ferroxidase center using both the wild-type (wt) protein and mutants of the iron ligands (H31G, H43G and H31G-H43G-D58A). The EPR titration of wt Dps and the H31G mutant with Fe(II) upon H2O2 addition shows that Fe(II) is oxidized with the increase of the signal at g = 4.3, reaching a maximum for 12 Fe(II)/subunit. The EPR signal becomes negligible when the titration is carried out on the triple mutant. These experiments indicate that the iron firstly occupied the A site at the ferroxidase center and confirm that the residues H31, H43 and D58 have a key role in the iron oxidation and incorporation process. Moreover, the data indicate that the ferroxidase center, upon mutation of H31 or H43 to Gly, changes the mode of iron binding. Finally, we demonstrate here that, when the iron micelle forms, the EPR signal at g = 4.3 disappears indicating that iron leaves the ferroxidase center to reach the inner cavity.

Highlights

  • Iron is essential for most living organisms since it serves as a cofactor in several enzymes and as a catalyst in electron transfer processes

  • Low-temperature CW-EPR measurements of paramagnetic species were undertaken to assess whether mononuclear haem and non-haem Fe(III) species [16, 17], mixed-valence Fe(II)–Fe(III) complexes [18, 19], or radical species [20, 21] are formed during iron oxidation in the native DPS from Listeria innocua and in different mutants where histidine residues are replaced by glycine

  • The data presented in this paper confirm the importance of the H31, H43 and D58 residues for the iron oxidation/H2O2 reduction reaction

Read more

Summary

Introduction

Iron is essential for most living organisms since it serves as a cofactor in several enzymes and as a catalyst in electron transfer processes.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.