Abstract

BackgroundScientific activity for 3D bioprinting has increased over the past years focusing mainly on fully functional biological constructs to overcome issues related to organ transplants. This research performs a scientometric analysis on bioprinting based on a competitive technology intelligence (CTI) cycle, which assesses scientific documents to establish the publication rate of science and technology in terms of institutions, patents or journals. Although analyses of publications can be observed in the literature, the identification of the most influential authors and affiliations has not been addressed. This study involves the analysis of authors and affiliations, and their interactions in a global framework. We use network collaboration maps and Betweenness Centrality (BC) to identify of the most prominent actors in bioprinting, enhancing the CTI analysis.Results2088 documents were retrieved from Scopus database from 2007 to 2017, disclosing an exponential growth with an average publication increase of 17.5% per year. A threshold of five articles with ten or more cites was established for authors, while the same number of articles but cited five or more times was set for affiliations. The author with more publications was Atala A. (36 papers and a BC = 370.9), followed by Khademhosseini A. (30 documents and a BC = 2104.7), and Mironov (30 documents and BC = 2754.9). In addition, a small correlation was observed between the number of collaborations and the number of publications. Furthermore, 1760 institutions with a median of 10 publications were found, but only 20 within the established threshold. 30% of the 20 institutions had an external collaboration, and institutions located in and close to the life science cluster in Massachusetts showed a strong cooperation. The institution with more publications was the Harvard Medical School, 61 publications, followed by the Brigham and Women’s hospital, 46 papers, and the Massachusetts Institute of Technology with 37 documents.ConclusionsNetwork map analysis and BC allowed the identification of the most influential authors working on bioprinting and the collaboration between institutions was found limited. This analysis of authors and affiliations and their collaborations offer valuable information for the identification of potential associations for bioprinting researches and stakeholders.

Highlights

  • Scientific activity for 3D bioprinting has increased over the past years focusing mainly on fully functional biological constructs to overcome issues related to organ transplants

  • Co-author analysis requires information related to authors’ aliases, affiliations, publications, areas of research, and their collaborations. This information can be obtained from digital libraries (DL) aimed to create systems for the identification of authors such as ORCID, which was created by non-profit organizations, or ResearcherID, Scopus, PubMED or Web of Science, which are companies that are developing their unique identifiers for authors [2,3,4]

  • From the initial search, where the ten most cited articles in bioprinting from Scopus were considered, the top-cited article is 3D bioprinting of tissue and organs [37]. This is a review of different techniques used in bioprinting cited 1498 times, as seen in Table 1; the second most cited article is Scaffold-free vascular tissue engineering using bioprinting [38]

Read more

Summary

Introduction

Scientific activity for 3D bioprinting has increased over the past years focusing mainly on fully functional biological constructs to overcome issues related to organ transplants. When evaluating advances in science and technology, names of authors and affiliations become major indicators, as 1) their number of citations by peers correlates to their acknowledgment as influential on their area of research [5] and 2) contributes to determining the specific disciplines involved in the research [1], both are important elements to nurture the decision-making process. In this sense, Competitive Intelligence (CI) acquires a relevant role, through the definition, collection, analysis, and presentation of relevant information [6]. CI is fundamental to research and development (R&D), including products or processes with radical novelty, such as bioprinting

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.