Abstract

The plasmonics dark mode of metal nanorings has potential in the field of e.g. sensing and surface-enhanced Raman spectroscopy (SERS). Most of the investigations on the plasmonics dark mode in a nanoring have been on far-field spectroscopy or near field simulations so far. In this paper, the near-field distribution of the femtosecond dark mode plasmon on an individual gold nanoring is mapped non-invasively using photoemission electron microscopy (PEEM). The experimental results show that strong electron emission distributions in the PEEM images under different polarization directions and wavelengths of femtosecond light are in qualitative agreement with the pattern of quadruple plasmon mode calculated using finite-difference time-domain simulation. In the meantime, it is found that there is a discrepancy in hot spot distribution between the observed PEEM image and the simulated photoelectron emission pattern, which is attributed to some possible factors, such as band structure near the Fermi level of the nanoring material and the temporal profile of femtosecond laser pulse. Real-space near-field imaging of the plasmonics dark mode provides a fundamental understanding of the near field and paves the way for further advancing the applications of dark mode in the field of e.g. sensing and SERS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call