Abstract

This paper presents the experimental and simulation results of electrical explosions of preheated tungsten wires at a current rise time of several tens of nanoseconds and at a current density of ∼108A∕cm2. The electrical characteristics of wire explosion (WE) were measured. The image of a wire during the electrical explosion was obtained with the help of a framing camera. The proposed magnetohydrodynamic (MHD) model takes into account different stages of WE, namely, the wire heating and vaporization, the phase transition, and the shunting discharge. Two different mathematical approaches were used for WE simulation at different stages. At the first stage, the simulation included a code describing the wire state. At the second stage, the shunting discharge was simulated together with the wire state. The simulation code includes the set of MHD equations, the equilibrium equation of state (density and temperature-dependent pressure and specific internal energy), electron transport models (density and temperature-dependent electrical conductivity and thermal conductivity), and electric circuit equations. Thermionic emission and vapor ionization initiate the plasma layer, which develops around the wire core and supports the shunting discharge. The calculated waveforms of the wire voltage and current, as well as the velocity of the expanding plasma, are in a good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.