Abstract

Using dielectric spectroscopy, we demonstrate that confinement-induced changes in the glass transition dynamics, as observed for polymethylphenylsiloxane in alumina nanopores, reveal a pronounced nonequilibrium nature. Our results indicate that glass formers confined to nanopores are able to recover their bulklike mobility. We found that the characteristic time constant of such an equilibration process correlates with an extremely slow viscous flow rate in cylindrical channels of nanometer size. Thus, all the way to equilibrium, confinement effects seen in faster segmental dynamics are released through the viscous flow which eventually helps to eliminate surplus volume gained by nanoconstrained polymers upon cooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call