Abstract
Although maintained by multiple arousal systems, wakefulness falters if orexin (hypocretin), orexin receptors, or orexin neurons are deficient; narcolepsy results with hypersomnolence or sudden onset of rapid eye movement sleep [or paradoxical sleep (PS)] and loss of muscle tonus. To learn how orexin neurons maintain wakefulness, we recorded neurons in head-fixed rats across the sleep-waking cycle and then labeled them with Neurobiotin to identify them by immunohistochemistry. We show that identified orexin neurons discharge during active waking, when postural muscle tone is high in association with movement, decrease discharge during quiet waking in absence of movement, and virtually cease firing during sleep, when postural muscle tone is low or absent. During PS, they remain relatively silent in association with postural muscle atonia and most often despite phasic muscular twitches. They increase firing before the end of PS and thereby herald by several seconds the return of waking and muscle tone. The orexin neurons would thus stimulate arousal, while antagonizing sleep and muscle atonia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.