Abstract
This paper evaluates the discharging mechanism in a PCM (phase change material) to air heat exchanger for the purpose of space heating using a composite of copper foam and PCM. The composite system is modelled with both 2-D and 3-D computational fluid dynamics approach for different inlet air temperatures to consider the effect of room temperature using the thermal non-equilibrium model for the porous medium compared with the thermal equilibrium one. The results show the significant advantages of composite heat exchanger compared with a PCM only case. For the inlet air temperature of 22 °C, the composite unit is solidified in 43% shorter time with 73% higher heat retrieval rate compared with that for the PCM only. After 10 h, the temperature variation between the inlet and outlet of the air channels for latent heat storage heat exchanger system with the composite system is 41 °C and 34 °C for the inlet air temperatures of 0 °C and 22 °C, respectively, while it is 33 °C and 29 °C for the system with PCM only. This study show the possible usage of PCMs in the energy storage heaters by introducing metal foams which is not possible using PCM only alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.