Abstract

The fundamental understanding of the surface reconstruction induced by the applied potential is of great significance for enhancing the oxygen evolution reaction (OER). Here, we show that a previously overlooked discharge current in the low applied potential region also leads to in situ electrochemical activation of a nitrogen-doped nickel oxyhydroxide surface. We exploit the fact that doping of heteroatoms weakens the surface structure, and hence, a weak discharge current originating from the capacitive nature of nickel oxyhydroxide has a strong structure-reforming ability to promote the formation of nitrogen and oxygen vacancies. The current density at 1.4 V (vs. Hg/HgO) can dramatically increase by as much as 31.3 % after discharge in the low applied potential region. This work provides insight into in situ enhancement of the OER and suggests that the low applied potential region must be a primary consideration in evaluating the origin of the activity of electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.