Abstract
A comprehensive study was performed to examine the flow characteristics over rectangular sharp-crested side weirs based on the traditional weir equation. To obtain a generally convenient discharge coefficient relationship, series of experiments were conducted according to manipulation of different prevailing parameters. The flow regime was consistently subcritical for upstream Froude numbers ranging from 0.08 to 0.91. Furthermore, experimental data sets of the former investigators were also applied. In order to identify the most important parameters affecting the discharge coefficient of rectangular sharp-crested side weirs, a sensitivity analysis was carried out based upon an artificial neural network modeling. Results of the sensitivity analysis indicated the Froude number to be the most influential parameter on discharge coefficient. Accordingly, a power equation is derived for estimating the discharge coefficient, which is applicable for both sub- and supercritical flow conditions simultaneously. Moreover, considering all the influential parameters, a nonlinear correlation was obtained with the highest precision to determine the discharge coefficient of sharp-crested rectangular side weirs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.