Abstract

Digital video imaging of the plasma electrolytic oxidation (PEO) of aluminium has been performed, which allowed evaluation of both dimensional characteristics of individual microdischarges appearing at the oxide–electrolyte interface and their collective behaviour throughout the oxidation process. It has been shown that the microdischarge cross-sectional dimensions vary within the range 0.01–1.35 mm2. In the course of PEO processing, small localized events (<0.03 mm3) always dominate in the microdischarge spatial distribution and the relative proportion of medium-sized to very large microdischarges is gradually redistributed in favour of the latter. Temporal dependences have been found for the fraction of surface area instantaneously experiencing the discharge, as well as for the spatial and current densities of the microdischarge. Discharge mechanisms occurring during PEO are discussed and a model of microdischarge formation is suggested, assuming the possibility of free-electron generation and glow discharge ignition in the gaseous media developed at the oxide–electrolyte interface. First approximation evaluations of thermal processes in the oxide layer under the discharge conditions have been considered. The estimated ranges of the microdischarge current density (50–18 kA m−2) and duration (0.25–3.5 ms) sufficient for initiating phase transitions (e.g. γ–α transformation and melting) in the surface oxide layer are shown to be in good agreement with experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call