Abstract

Dielectric-barrier discharges (DBDs) are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an AC/pulse power supply. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. DBDs exist usually in filamentary mode, based on the streamer nature of the discharges. The main advantage of this type of electrical discharges is that nonequilibrium and non-thermal plasma conditions can be established at atmospheric pressure. VUV/UV sources based on DBDs are considered as promising alternatives of conventional mercury-based discharge plasmas, producing highly efficient VUV/UV radiation. The experiments have been performed using coaxial and planar geometry of DBD (gas gap: 1–3 mm) made of quartz with N2/Ar/Xe gas at different pressures. A proper ultra high vacuum system and gas filing system has been made for the processing & characterization of DBD tubes. A RF generator (20-100 kHz, 0-2.4 kV peak) is used for discharges in DBD tube. A stable and uniform discharge is produced in the gas gap between the dielectric barrier electrodes. The discharge characteristics have been analyzed by V-I characteristics & Lissajous figure and found that the spatial discharge processes varies strongly according to the applied voltage waveform, pressure of filled gas and geometry of tube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call