Abstract

With the advancement of spark ignition engines, lean or diluted in-cylinder charge is often used to improve the engine performance. Enhanced in-cylinder charge motion is widely applied under such conditions to promote the flame propagation, which raise challenges for the spark ignition system. In this work, the spark discharging process is investigated under different flow conditions via both optical diagnosis and electrical measurement. Results show that the spark plasma channel is stretched under flow conditions. A higher discharge current can maintain the stretched spark plasma for a longer duration. Re-strikes are observed when the spark plasma is stretched to a certain extent. The frequency of re-strikes increases with increased flow velocity and decreased discharge current level. The discharge duration reduces with the increased flow velocity. The effects of gas flow on the ignition and flame kernel development are studied in a constant volume optical combustion chamber with premixed lean and stoichiometric methane air mixture. Two spark strategies with low and high discharge current are used for the ignition. The flame propagation speed of both lean and stoichiometric mixtures increases with the increased gas flow velocity. A higher discharge current level retains a more stable spark channel and improves the flame kernel development for both lean and stoichiometric conditions, especially under the higher gas flow velocity of 20 m/s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call