Abstract
The electrolyte temperature has a great influence on the performance of the coating prepared by micro-arc oxidation (MAO). The behavior of MAO discharge in the changing electrolyte temperature has been investigated. Compared to constant electrolyte temperature in conventional MAO process, the process has different discharge characteristics under the changing electrolyte temperature. The amplitude of pulse voltage was detected to study the change of discharge characteristic under the constant-current control of MAO power supply. Three successive discharge stages were differentiated by the variable the pulse voltage versus process time. Since there were significant changes in the sound, the sound signals were acquired and the audio analysis was used to describe the changing of the MAO discharge at different stages. Optical emission spectroscopy (OES) was employed in situ to unveil how the micro-discharge changed with the temperature increasing. Scanning electron microscopy (SEM) was used to characterize the morphology of the coatings on 6N01 aluminum alloy prepared by normal process with the constant-temperature control of the MAO electrolyte and by the process under the changing electrolyte temperature. A mode of film growth and micro-discharge was given to describe the effects of the changing electrolyte temperature in the whole MAO process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science and Chemical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.