Abstract

Herein, magnetic (Co3+/Co2+)-integrated SnO2, SnO2/ZnFe2O4, and ZnFe2O4 composites have been prepared from triply distilled water and 30% of isopropanol in the water medium. The phase evolution, microstructure, and magnetism were investigated successfully and tested for cationic dye wastewater degradation containing Rhodamine 6G and Methylene Blue under ultra-violet irradiation. Composite spheres are attributed to efficient heterojunction interfaces between ZnFe2O4 and SnO2 semiconductors with the support of (Co3+/Co2+) nanoparticles. The results provide a simple, low-cost, environmentally friendly, and scalable method of ternary composites to degrade mixed dyes. Co3+/Co2+-implanted SnO2/ZnFe2O4 offered narrowed bandgap energy, more light absorption, diminishing electron-hole recombination, and more charge carriers toward cationic dye wastewater than the binary components. The rate constant of Rhodamine 6G degradation was observed at 0.0237min-1, and Methylene Blue degradation was observed at 0.0187min-1 at 90min under UV (λ = 365nm) irradiation. Capturing studies of various organic reactive species and mechanisms of composites was also proposed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call