Abstract

A quantitative criterion to prove and analyze convergence within the numerical renormalization group (NRG) is introduced. By tracing out a few further NRG shells, the resulting reduced density matrices carry relevant information on numerical accuracy as well as entanglement. Their spectra can thus be analyzed twofold. The smallest eigenvalues provide a sensitive estimate of how much weight is discarded in the low energy description of later iterations. As such, the discarded weight is a clear indicator of the accuracy of a specific NRG calculation. In particular, it indicates in a site-specific manner whether sufficiently many states have been kept within a single NRG run. The largest eigenvalues of the reduced density matrices, on the other hand, lend themselves to a straightforward analysis in terms of entanglement spectra, which can be combined into entanglement flow diagrams. The latter show strong similarities with the well-known standard energy flow diagram of the NRG, supporting the prevalent usage of entanglement spectra to characterize different physical regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.