Abstract

Disassembly modeling and planning are meaningful and important to the reuse, recovery, and recycling of obsolete and discarded products. However, the existing methods pay little or no attention to resources constraints, e.g., disassembly operators and tools. Thus a resulting plan when being executed may be ineffective in actual product disassembly. This paper proposes to model and optimize selective disassembly sequences subject to multiresource constraints to maximize disassembly profit. Moreover, two scatter search algorithms with different combination operators, namely one with precedence preserved crossover combination operator and another with path-relink combination operator, are designed to solve the proposed model. Their validity is shown by comparing them with the optimization results from well-known optimization software CPLEX for different cases. The experimental results illustrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.