Abstract

In activated sea urchin coelomocytes, cytoplasmic organelles move along distinct actin and microtubule dependent pathways, actin-based motility is driven by an unconventional myosin, and microtubule disassembly does not effect actin-dependent organelle motility [D'Andrea et al., 1994: J. Cell Sci. 107:2081–2094]. Given the growing evidence for potential interactions between components of the actin and microtubule cytoskeletons, we examined the effect of actin filament disassembly on the movement of mitochondria along microtubules in activated coelomocytes. Coelomocytes treated with cytochalasin B (CB), to disrupt actin filaments, exhibited a thinning of the cytoplasm, enhanced lateral undulation of microtubules, and ceased centripetal cortical flow of actin. Interestingly, the loss of actin filaments resulted in a ∼1.5-fold increase in the average velocity of outward and inward moving mitochondria and increased the frequency of centripetal movement. To test if enhanced motility along microtubules was a consequence of decreased actin-myosin interaction, coelomocytes were treated with 2,3-butanedione monoxime (BDM), a potent inhibitor of myosin activity [Cramer and Mitchison, 1995: J. Cell Biol. 131:179–189]. BDM inhibited all types of actin-based motility observed in these cells including retrograde cortical flow, protrusion and retraction of the cell edge, and movement of intracellular organelles. Surprisingly, BDM treatment stopped the movement of mitochondria in CB-exposed cells, suggesting that BDM can also act as an inhibitor of organelle movement along microtubules. Collectively, these data demonstrated that microtubule-dependent mitochondrial motility and microtubule movement were sensitive to changes in the assembly state of the actin cytoskeleton. Cell Motil. Cytoskeleton 40:368–378, 1998. © 1998 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.