Abstract

Emerging infectious diseases can cause host community disassembly, but the mechanisms driving the order of species declines and extirpations following a disease outbreak are unclear. We documented the community disassembly of a Neotropical tadpole community during a chytridiomycosis outbreak, triggered by the generalist fungal pathogen, Batrachochytrium dendrobatidis (Bd). Within the first 11months of Bd arrival, tadpole density and occupancy rapidly declined. Species rarity, in terms of tadpole occupancy and adult relative abundance, did not predict the odds of tadpole occupancy declines. But species losses were taxonomically selective, with glassfrogs (Family: Centrolenidae) disappearing the fastest and tree frogs (Family: Hylidae) and dart-poison frogs (Family: Dendrobatidae) remaining the longest. We detected biotic homogenization of tadpole communities, with post-decline communities resembling one another more strongly than pre-decline communities. The entire tadpole community was extirpated within 22months following Bd arrival, and we found limited signs of recovery within 10years post-outbreak. Because of imperfect species detection inherent to sampling species-rich tropical communities and the difficulty of devising a single study design protocol to sample physically complex tropical habitats, we used simulations to provide recommendations for future surveys to adequately sample diverse Neotropical communities. Our unique data set on tadpole community composition before and after Bd arrival is a valuable baseline for assessing amphibian recovery. Our results are of direct relevance to conservation managers and community ecologists interested in understanding the timing, magnitude, and consequences of disease outbreaks as emerging infectious diseases spread globally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call