Abstract

Litter accumulation dynamics and first year rates of disappearance were investigated for leaves of overstorey and understorey species in the mixed eucalypt forest in the Griffith University study area, Queensland, Australia. The average biomass of the litter layer, was 10.2 t/ha. The wood and overstorey leaf litter formed 62.7% of the accumulated litter biomass, and were spread continuously across the ground. The distribution of shrub litter was discontinuous, being concentrated in localized patches beneath individual plants. The litter bag and tethered leaf techniques were used to measure the rate of disappearance of overstorey and shrub leaves. The ‘pairedquadrat’ technique was used to measure the weight loss of the grasses. The small leaves of the dominant shrub, Pultenaea villosa Willd. disappeared most rapidly, followed by the overstorey leaves, grasses and Acacia leaves. Fragmentation by physical factors and litter fauna appeared to be the major factors responsible for the disappearance of the overstorey leaves during the first year of exposure. The data suggest that removal of leaf constituents by leaching and microbial decomposition were more important for the shrub litter than the overstorey leaves. Fractional disappearance rates (loss constants) obtained from the short term weight loss measurements, and calculated using the steady-state model of litter accumulation (k=L/X), overestimated the rate of litter disappearance and litter decomposition. For the overstorey leaves in particular, the loss constants also overestimated the rate of loss of material from the litter layer since the fragmented and consumed tissues accumulated in the fraction of comminuted fragments before moving into the humus/soil subsystem. A compartment model of the components of the litter layer in the mixed eucalypt forest is presented. It incorporates overstorey and understorey litter accession, accumulation and disappearance data. The adoption of a two dimensional decomposition/accumulation matrix is suggested as an appropriate framework within which to simulate the dynamics of the litter subsystem in mixed eucalypt forest ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.